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A tool for the integration and classification of heterogeneous diseases
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MOGDx is a command line tool designed to integrate multi-omic data for heterogenous disease
classification. It extracts important features, integrates modalities using similarity network fusion,

imputes missing samples and utilises a graph neural network to perform accurate classification on a
patient similarity network.

1. Motivation & Aims Multi-Omic Measures
Heterogeneity in human diseases confounds everything; clinical trials, genetic association testing, drug I |
response and intervention strategies to name a few. Redefining such diseases through subtype
classification, symptomatic grading or similar has the potential to uncover new treatments, repurpose Feature Extraction

old treatments or identify intervention strategies. Autoencoder for Dimensionality

Reduction
An individual omic measure provides a single measure of biological complexity however, the
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integration of multiple omic types could combine multiple measures of biological complexity, . | -=E-. :' :IE o
mirroring the heterogeneity in these diseases. Logistic Regression  Differential Expression mEEE S ol
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Patient Similarity Matrix

The use of a network taxonomy for multi-omic data integration has risen in popularity recently>%>.

Networks are easily integrated, can readily handle missing data, and have been used in a wide variety
of biomedical applications in the unsupervised setting”.
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Graph Neural Networks (GNN) have shown powerful classification performance on several benchmark
network datasets®. The use of GNN's in a supervised setting for disease classification is a promising l
avenue to redefine heterogenous diseases. Similarity Network Fusion BN EE e o eee | mm

Our aims are to develop MOGDx, a tool which:
Concatenate latent

® Performs accurate classification tasks for heterogenous diseases embeddings
* O @ B | [ [T
® Yields interpretable results \ o
e Is reproducible, can be downloaded and run on the command line . i o
Fused Patient Similarity Network Graph Neural Network Omic Features
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® Patient Similarity Network (PSN)

A PSN is a method of classifying patients based on a similarity measure in various features. We
calculated patient similarity using Pearson correlation on extracted features from each modality Patient Classification
and utilised a K-Nearest Neighbour algorithm to keep the strongest connections. P

® Similarity Network Fusion (SNF)

SNF is a computational method to integrate multiple data types when represented as a PSN. It is
effective in capturing the full underlying spectrum of the data, as well as inferring missing
connections. We used SNF to integrate our PSN's as per Figure 1.

Figure 1. Pipeline of MOGDx | MOGDx takes any number of omic measures as input. Feature extraction is performed to maximise
similarities between patients. Each patient similarity matrix is converted to a network, and these patient similarity networks are fused using
SNF. In parallel, an AE is trained for dimensionality reduction. The reduced latent embeddings are concatenated and added to the fused

e Autoencoder (AE) network as node features. A graph neural network is trained and patient classification performed.
An AE is a particular type of neural network which is trained to copy its input to its output. We A Summary of TCGA datasets
utilised this architecture to extract the hidden dimension, which is a reduced representation Dataset Categories Modalities
fits i All Features  Extracted Features
ot Its Input. HER2 82 mRNA 29995 1657 B
Basal 190 miRNA 423 465
BRCA Luminal A 562 DNAm 293649 191
® Graph Neural Network (GNN) Luminal B 209  RPPA 464 111
Normal-like 40 CNV 60265 341 Performance Summary of MOGDXx
Grade 2 215 mRNA 22185 488 -
. . . Dataset Numb f Modalit Numb fS I Numb f Cl A F1
A GNN is a class of neural networks which learn from network structure and embeddings. We Grade 3 229 miRNA 345 200 e F 08620007 0851004
- . LGG DNAm 321999 318 BRCA
utilised a graph convolutional network to learn from the fused PSN and an embedded vector. The RPPA 457 65 e ? 12543 ;1 ggggiggég gggiiggig
embedded vector was created by concatenating the reduced representation from each modality CNV 60274 181 KIPAN 5 3383 3 0.949 +0.013 0.857 & 0.017
KICH 66 mRNA 28212 1200
KIRP 284  miRNA 1556 352
KIPAN  KIRC 514  DNAm 310045 167
. RPPA 469 48
3. Work in Progress e oo o

e Developing a better method of dimensionality reduction for node embeddings or

improving the performance of the AE Figure 2. (A) Summary of Datasets | The BRCA dataset is for PAM50 subtype classification of Breast Invasive Carcinoma, consisting of 5

classes. The LGG dataset is a grade classification task for Low Grade Glioma. The KIPAN dataset is a subtype classification task consisting of 3

As can be seen in Figure 3 (B), the AE is significantly less informative than the PSN. We are classes. (B) Summary of Performance | MOGDx demonstrates state-of-the-art classification accuracy in a variety of tasks. All available
working on improving this performance by calculating a joined loss of all omics as opposed to the modalities were used for both BRCA and KIPAN. Performance is shown for BRCA with and without the Normal-like class. Only DNAm was used
current parallel implementation. on the LGG dataset, as it achieved the best accuracy while still including the maximum number of samples.
®  Graph convolutional networks require a fully connected network during training A B

BRCA KIPAN LGG ElNeR AR —
Graph convolutional network is a transductive algorithm, meaning all patient samples have to be o .01

present during training. It requires a full re-training of the algorithm when new samples are
collected. We are working on moving to the inductive setting and using an algorithm such as
GraphSage.
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® Early predictive power, longitudinal analysis and novel datasets _os- Modalities _os Models
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MOGDx demonstrated some early predictive power when classifying on the BRCA dataset. We are
working on extending this analysis to a novel dataset. We are also beginning to work on
a longitudinal aspect to MOGDx which can predict if a patient classification label will change.

PSN

o
N
o
N

e

T 3
Ll B
5

0.6 1

4. How you can help
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If you use, have experience with or interest in multi-modal network integration or heterogenous
disease classification, we would love to talk with you about your research and expectations. We
are particularly keen to discuss methods or datasets which could further develop or improve
future network analyses.

Figure 3. (A) Modality Integration Importance | Some omic measures are more predictive than others depending on the classification task
and should only be integrated if they improve classification performance or improve patient sample coverage. (B) PSN Importance |

Combining AE and PSN reduces variance in train and test splits while maintaining optimal accuracy.
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